关于TensorFlow、Keras、Python版本匹配一览表

2024-04-18 0 955
目录
  • TensorFlow、Keras、Python 版本匹配一览表
  • 版本匹配清单
  • 附上一段测试程序(鸢尾花分类简化版)
  • 总结

TensorFlow、Keras、Python 版本匹配一览表

兴冲冲装完软件,发现运行不了,查了下资料,发现是TensorFlow、Keras、Python 版本匹配问题。

这里提供一个版本匹配清单,需要严格按此标准安装。

版本匹配清单

FrameworkEnv nameDescriptionTensorFlow 2.2tensorflow-2.2TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7.TensorFlow 2.1tensorflow-2.1TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6.TensorFlow 2.0tensorflow-2.0TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6.TensorFlow 1.15tensorflow-1.15TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6.TensorFlow 1.14tensorflow-1.14TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6.TensorFlow 1.13tensorflow-1.13TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6.TensorFlow 1.12tensorflow-1.12TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6.tensorflow-1.12:py2TensorFlow 1.12.0 + Keras 2.2.4 on Python 2.TensorFlow 1.11tensorflow-1.11TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6.tensorflow-1.11:py2TensorFlow 1.11.0 + Keras 2.2.4 on Python 2.TensorFlow 1.10tensorflow-1.10TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6.tensorflow-1.10:py2TensorFlow 1.10.0 + Keras 2.2.0 on Python 2.TensorFlow 1.9tensorflow-1.9TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6.tensorflow-1.9:py2TensorFlow 1.9.0 + Keras 2.2.0 on Python 2.TensorFlow 1.8tensorflow-1.8TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6.tensorflow-1.8:py2TensorFlow 1.8.0 + Keras 2.1.6 on Python 2.TensorFlow 1.7tensorflow-1.7TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6.tensorflow-1.7:py2TensorFlow 1.7.0 + Keras 2.1.6 on Python 2.TensorFlow 1.5tensorflow-1.5TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6.tensorflow-1.5:py2TensorFlow 1.5.0 + Keras 2.0.8 on Python 2.TensorFlow 1.4tensorflow-1.4TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6.tensorflow-1.4:py2TensorFlow 1.4.0 + Keras 2.0.8 on Python 2.TensorFlow 1.3tensorflow-1.3TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6.tensorflow-1.3:py2TensorFlow 1.3.0 + Keras 2.0.6 on Python 2.

附上一段测试程序(鸢尾花分类简化版)

这一段代码不需要准备数据文件,可直接验证是否可以训练模型。

#ex7-2.py
#导入库包
import numpy as np
import keras
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
#读入数据
train_x = np.array([[1.4, 0.2],
[1.7, 0.4],
[1.5, 0.4],
[2.3, 0.7],
[2.7, 1.1],
[2.6, 0.9],
[4.6, 1.3],
[3.5, 1.0],
[3.9, 1.2]])
train_y = np.array([[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1]])
#搭建模型
model = Sequential()
model.add(Dense(units = 2, input_dim = 2))
#model.add(Dense(units = 2, input_dim = 2, activation = \’sigmoid\’))
model.add(Dense(units = 3, activation = \’softmax\’))
#编译模型
model.compile(optimizer = \’adam\’, loss = \’mse\’)
#训练模型
model.fit(x = train_x, y = train_y, epochs = 10000)
#保存模型
keras.models.save_model(model, \’iris2.model\’)

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持悠久资源网。

您可能感兴趣的文章:

  • tensorflow1.15与numpy、keras以及Python兼容版本对照方式
  • 使用Python、TensorFlow和Keras来进行垃圾分类的操作方法
  • keras tensorflow 实现在python下多进程运行
  • Python3.7安装keras和TensorFlow的教程图解
  • win10 + anaconda3 + python3.6 安装tensorflow + keras的步骤详解
  • Python使用keras和tensorflow遇到的问题及解决

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

悠久资源 Python 关于TensorFlow、Keras、Python版本匹配一览表 https://www.u-9.cn/jiaoben/python/186846.html

常见问题

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务