Python pandas遍历行数据的2种方法小结

2024-04-18 0 427
目录
  • 背景
  • 小编环境
  • 演示数据
  • 方法1
  • 方法2

背景

pandas在数据处理过程中,除了对整列字段进行处理之外,有时还需求对每一行进行遍历,来处理每行的数据。本篇文章介绍 2 种方法,来遍历pandas 的行数据

小编环境

import sys
print(\’python 版本:\’,sys.version.split(\’|\’)[0])
#python 版本: 3.11.5
import pandas as pd
print(pd.__version__)
#2.1.0

演示数据

Python pandas遍历行数据的2种方法小结

方法1

pandas.DataFrame.itertuples:返回的是一个命名元组官方文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.itertuples.html

1. 无任何参数

import pandas as pd
data=pd.read_excel(\”data.xlsx\”)

for row in data.itertuples():
print(\”row:\”,row,\”\\n\”)
#row: Pandas(Index=0, 序号=1, 分割字符=\’1&1&1\’, 固定宽度=\’111\’)

print(\”type(row):\”,type(row),\”\\n\”)
#type(row): <class \’pandas.core.frame.Pandas\’>

print(\”row.序号:\”,row.序号)
#row.序号: 1

print(\”row.分割字符:\”,row.分割字符)
#row.分割字符: 1&1&1

print(\”row.固定宽度:\”,row.固定宽度)
#row.固定宽度: 111

break

2. 忽略掉索引

import pandas as pd
data=pd.read_excel(\”data.xlsx\”)

for row in data.itertuples(index=False): #忽律索引
print(\”row:\”,row,\”\\n\”)
#row: Pandas(序号=1, 分割字符=\’1&1&1\’, 固定宽度=\’111\’)

print(\”type(row):\”,type(row),\”\\n\”)
#type(row): <class \’pandas.core.frame.Pandas\’>

print(\”row.序号:\”,row.序号)
#row.序号: 1

print(\”row.分割字符:\”,row.分割字符)
#row.分割字符: 1&1&1

print(\”row.固定宽度:\”,row.固定宽度)
#row.固定宽度: 111

break

3. 对命名元组起别名

import pandas as pd
data=pd.read_excel(\”data.xlsx\”)

for row in data.itertuples(index=False,name=\”data\”):
print(\”row:\”,row,\”\\n\”)
#row: data(序号=1, 分割字符=\’1&1&1\’, 固定宽度=\’111\’)

print(\”type(row):\”,type(row),\”\\n\”)
#type(row): <class \’pandas.core.frame.data\’>

print(\”row.序号:\”,row.序号)
#row.序号: 1

print(\”row.分割字符:\”,row.分割字符)
#row.分割字符: 1&1&1

print(\”row.固定宽度:\”,row.固定宽度)
#row.固定宽度: 111

break

方法2

pandas.DataFrame.iterrows:返回(index, Series)元组官方文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iterrows.html

import pandas as pd
data=pd.read_excel(\”data.xlsx\”)

for index,row in data.iterrows():
print(\”index:\”,index,\”\\n\”)
#index: 0

print(\”row:\”,row,\”\\n\”)
#row: 序号 1
#分割字符 1&1&1
#固定宽度 111
#Name: 0, dtype: object

print(\”type(row):\”,type(row),\”\\n\”)
#type(row): <class \’pandas.core.series.Series\’>

print(\”row[\’序号\’]:\”,row[\’序号\’])
#row[\’序号\’]: 1

print(\”row[\’分割字符\’]:\”,row[\’分割字符\’])
#row[\’分割字符\’]: 1&1&1

print(\”row[\’固定宽度\’]:\”,row[\’固定宽度\’])
#row[\’固定宽度\’]: 111

break

到此这篇关于Python pandas遍历行数据的2种方法小姐的文章就介绍到这了,更多相关pandas遍历行内容请搜索悠久资源网以前的文章或继续浏览下面的相关文章希望大家以后多多支持悠久资源网!

您可能感兴趣的文章:

  • 在pandas中遍历DataFrame行的实现方法
  • pandas按行按列遍历Dataframe的几种方式
  • python pandas遍历每行并累加进行条件过滤方式
  • Python pandas按行、按列遍历DataFrame的几种方式
  • pandas实现按行遍历dataframe的方法(itertuples,iterrows)
  • pandas按行按列遍历Dataframe的三种方式小结

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

悠久资源 Python Python pandas遍历行数据的2种方法小结 https://www.u-9.cn/jiaoben/python/186628.html

常见问题

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务