Pandas空值处理全攻略

2024-04-18 0 691
目录
  • 1. 删除空值行/列:
  • 2. 填充空值:
  • 3. 插值法填充:
  • 4. 设置空值标记:
  • 5. 计算空值的总和:
  • 6. 删除具有空值的观测值:
  • 7. 填充前进行空值检测:

在进行数据分析和建模时,空值的存在会给结果带来很大影响,甚至导致错误。所以在预处理数据时,我们必须对空值进行妥善处理。

在Pandas中,常见的空值表示有:

  • NaN:表示数值型的空值
  • None:表示对象型的空值
  • NaT:表示时间型的空值

对于这些空值,我们常见的处理方法有:

1. 删除空值行/列:

df.dropna() # 删除全部空值行
df.dropna(axis=1) # 删除全部空值列
df.dropna(thresh=2) # 删除全为空值的行

2. 填充空值:

df.fillna(value) # 用值value填充空值
df.fillna(method=\’ffill\’) # 前向填充
df.fillna(method=\’bfill\’) # 后向填充

3. 插值法填充:

df[\’col1\’].interpolate() # 一维插值
df[[\’col1\’,\’col2\’]].interpolate() # 多维插值

4. 设置空值标记:

df.loc[:, \’col1\’].fillna(\’#N/A\’, inplace=True)

5. 计算空值的总和:

df.isnull().sum() # 计算每列空值个数
df.isnull().sum().sum() # 计算总空值个数

6. 删除具有空值的观测值:

df.dropna(subset=[\’col1\’]) # 删除col1列中具有空值的行

7. 填充前进行空值检测:

df[\’col1\’].fillna(df[\’col1\’].mean(), inplace=True)
df[\’col1\’].fillna(df[\’col1\’].median(), inplace=True)

总之,在Pandas中空值的处理方法很多,我们可以根据实际的数据集和业务需要选择合适的方法进行空值填充或删除。充分处理空值可以确保数据分析的准确性和可靠性。

到此这篇关于Pandas空值处理全攻略的文章就介绍到这了,更多相关Pandas空值内容请搜索悠久资源网以前的文章或继续浏览下面的相关文章希望大家以后多多支持悠久资源网!

您可能感兴趣的文章:

  • 浅谈pandas中空值的处理方法
  • Python实战基础之Pandas统计某个数据列的空值个数
  • Pandas筛选DataFrame含有空值的数据行的实现
  • Python pandas DataFrame基础运算及空值填充详解
  • Python pandas之求和运算和非空值个数统计
  • pandas 添加空列并赋空值案例
  • pandas 缺失值与空值处理的实现方法
  • Python pandas.DataFrame 找出有空值的行

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

悠久资源 Python Pandas空值处理全攻略 https://www.u-9.cn/jiaoben/python/186997.html

常见问题

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务